您现在的位置:网站首页 >> 科技前沿 >> 内容

连PS都自叹不如!Facebook的AI眼部修复技术逆天了

时间:2018-6-19 16:01:06 点击:

Tags:连P PS S都 都自 
  核心提示:在人们的日常拍照中,眨眼经常会成为影响最终人像照片效果的因素之一;而且红眼等拍照痼疾相比,眨眼所造成的闭眼或半睁眼问题更加难以在后期修图中进行调整即使现有的修图神器如 Adobe Photoshop,...

在人们的日常拍照中,眨眼经常会成为影响最终人像照片效果的因素之一;而且红眼等拍照痼疾相比,眨眼所造成的闭眼或半睁眼问题更加难以在后期修图中进行调整——即使现有的修图神器如 Adobe Photoshop,恐怕也很难让照片中的人自然而然地睁开眼睛。

现在,Facebook 的研究者们已近在着手解决这一问题,并取得了一定的成果。

雷锋网了解到,Facebook于近日发表了一篇题为《Eye In-Painting with Exemplar Generative Adversarial Networks(通过样本生成式对抗网络进行眼部图像修复)》的论文,该论文解决的问题是,利用已有的人像样本,来对处于闭眼状态的人像进行眼部修复,使得后者呈现出自然睁眼的效果。

具体来说,利用一个基于机器学习技术的生成式对抗网络(Generative Adversarial Networks,简称 GAN),对其进行训练;

GAN 的一部分工作负责识别人像中的人脸,另外一部分则根据识别结果去生成类似于真实而自然的图像——在双方不断协作和改进的过程中,最终使得生成的图像结果接近于真实的人脸。

我们以下图中所展示的过程为例。简单来说,通过一张处于睁眼状态的人脸去对闭眼的图像进行人眼修复,一个简单的步骤是复制前者的眼睛到后者;但经常出现的问题是图像在颜色、姿态、方向上的不匹配。

而 Facebook 所做的就是利用 GAN 对被修复图像的面部特征进行识别,并针对识别结果对图像进行不断修正,最终达到自然效果。

雷锋网查询到,在 Facebook 论文中给出的测试结果中,研究者们利用 A/B 测试方法,从 Facebook 的内部数据库拿出两组图片;第一组是一张闭眼图和一张真实图,第二组是一张闭眼图和一张 GAN 修复图——

结果是有 54% 的测试参与者没有区分出原图像和眼部修复图像之间的真实性差异。而能够被区分的图像,往往是图片中人像出现了戴眼镜或头发遮挡的情况,论文认为,更多的训练可以减少这类问题。

当然,除了眼部修复,利用 GAN 进行更多方面的图像修复完全成为可能,考虑到 Facebook 运行着全球最大的社交网络,尤其是社交网络中人像数据的庞大性,这一技术毫无疑问更有更大的应用空间。不过 54% 的成绩并不算突出,可能还需要更大的改进空间。

不过,雷锋网更为关心的是,在图像移植技术越来越先进、越来越接近真实效果的情况下,包括 Facebook 在内的巨头们将如何保证人们的肖像等权力得到充分的保障;这又是一个技术如何有效地为人类服务的问题。

作者:佚名 来源:不详
相关评论
  • 重要声明:本站所有的文章、图片、评论等均由网友发表上传或来源于自网络。
    如有信息侵犯了您的权益,请联系网站客服,我们将乐意接受您的意见,并及时作出修改。本站拒绝任何人以任何形式在此发表与中华人民共和国法律相抵触的言论!
    业务合作:QQ:49631073 E-mail:DD51@live.com
  • Powered by Phobos.cn © 2012-2018 All Rights Reserved.